Homogenization of periodic elastic composites and locally resonant sonic materials
نویسندگان
چکیده
A method for homogenization of an elastic composite with periodic microstructure is presented, focusing on the Floquet-type elastic waves. The resulting homogenized frequency-dependent elasticity and mass density then automatically satisfy the overall conservation laws and by necessity produce the exact dispersion relations. It is also shown that the dispersion relations and the associated field quantities can be accurately calculated using a mixed variational approach, based on the microstructure of the associated unit cell. The method is used to calculate the dynamic effective parameters for a layered composite by using both the exact solution and the results of the mixed variational formulation. The exact and approximate results are shown to be in close agreement, which makes it possible to use the approximate method for the proposed type of homogenization in cases where an exact solution does not exist. The homogenized frequency-dependent effective parameters give rise to the concept of dynamic Ashby charts that can be used to illustrate the effect of the microstructural architecture on the dynamic properties of a composite. In particular, the charts vividly display how this effective stiffness and density vary with frequency and may attain negative values within certain frequency ranges which can be changed as desired using the microarchitecture while keeping the volume fraction of the unit cell’s constituents constant.
منابع مشابه
A comparison of homogenization and standard mechanics analyses for periodic porous composites
Abstraet. Composite material elastic behavior has been studied using many approaches, all of which are based on the concept of a Representative Volume Element (RVE). Most methods accurately estimate effective elastic properties when the ratio of the RVE size to the global structural dimensions, denoted here as ~/, goes to zero. However, many composites are loeally periodic with finite q. The pu...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملAn accelerated Fast Fourier Transform algorithm for nonlinear composites
A fast numerical algorithm to compute the local and overall responses of nonlinear periodic composite materials is developed. This alternative formulation allows us to improve the convergence of the existing method of Moulinec and Suquet [1], [2]. In the present method a nonlinear elastic (or conducting) material is replaced by infinitely many locally linear thermoelastic materials with moduli ...
متن کاملPropagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization
Wave propagation in periodic elastic composites whose phases may have not only highly contrasting but possibly also (in particular) highly anisotropic stiffnesses and moderately contrasting densities is considered. A possibly inter-connected (i.e. not necessarily isolated) ‘‘inclusion” phase is assumed generally much softer than that in the connected matrix, although some components of its stif...
متن کاملHomogenization in thermoelasticity : application to composite materials
One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear ...
متن کامل